

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 2nd Semester Examination, 2022

STSACOR03T-STATISTICS (CC3)

Time Allotted: 2 Hours Full Marks: 40

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

GROUP-A

	Answer any four questions from the following	5×4 = 20
1.	In a single throw of three dice, find the probability of getting a sum of at least 5.	5
2.	An event A is known to be independent of events B, $B \cup C$ and $B \cap C$. Show that it is also independent of C.	5
3.	Write a note on pairwise and mutually independence of events.	5
4.	A continuous random variable <i>X</i> has the p.d.f. $f(x) = A + Bx$, $0 \le x \le 1$. If mean of the distribution is $\frac{1}{2}$, find <i>A</i> and <i>B</i> .	5
5.	An urn contains n cards marked from 1 to n , two cards are drawn at a time. Find the mathematical expectation of the product of the numbers on the cards.	5
6.	If $X \sim B(n, p)$, show that $P(X \le 2) = P(X \ge (n-2))$, if and only if $p = \frac{1}{2}$.	5

GROUP-B

	Answer any two questions from the following	$10 \times 2 = 20$
7.	(a) State and prove Bayes theorem.	5
	(b) The chances of X , Y , Z becoming managers of a certain company are 4:2:3. The probabilities that bonus scheme will be introduced of X , Y , Z become managers are 0.3, 0.5 and 0.8 respectively. If the bonus scheme has been introduced, what is the probability that X is appointed as the manager?	5

CBCS/B.Sc./Hons./2nd Sem./STSACOR03T/2022

- 8. (a) Find the mean deviation about mean of binomial distribution. 5

 (b) Stating underlying assumptions, show that Poisson distribution can be 5
 - (b) Stating underlying assumptions, show that Poisson distribution can be approximated by binomial distribution.
- 9. (a) If X and Y are independent Poisson variables, show that the conditional distribution of X given X + Y is binomial.
 - (b) A couple decides to have children until they have a female child. What is the probability distribution of the number of children they would have? If the probability of a male child in their community is $\frac{2}{3}$, how many children are they expected to have before the first female child is born?

5

5 5

- 10. (a) Find the mean and variance of Hypergeometric distribution.
 - (b) The number of aeroplanes arriving at an airport in a 30 minutes interval obeys the Poisson law with mean 25. Use Chebyshev's inequality to find the least chance, that the number of planes to arrive within a given 30-minute interval will be between 15 and 35.
 - **N.B.:** Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

____×___