WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 3rd Semester Examination, 2020, held in 2021

CEMACOR05T-CHEMISTRY (CC5)

Physical Chemistry-II

Time Allotted: 2 Hours
Full Marks: 40

> The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable.
> All symbols are of usual significance.

Answer any three questions taking one from each unit

UNIT-I

1. (a) What is a Newtonian fluid? Polymer solutions are often non-Newtonian. - Explain.
(b) Define ionic mobility. Does it depend on concentration? Give reasons in support of $1+1+2$ your answer. How is it related with conductivity of solution?
(c) What is viscosity activation energy for laminar flow of a liquid? How is it related to the viscosity coefficient of the liquid?
(d) The equivalent conductances at infinite dilution (Λ_{0}) of KNO_{3} and KCl solutions are 144.96 and $149.86 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ at $25^{\circ} \mathrm{C}$ respectively. Calculate the quantity $\left[\Lambda_{0}(\mathrm{NaCl})-\Lambda_{0}\left(\mathrm{NaNO}_{3}\right)\right]$. State the law used.
2. (a) Establish an expression for the ratio of equivalent conductance and molar conductance of a given electrolytic solution.
(b) The increase in equivalent conductance of a strong electrolyte with dilution is due to increase in velocity of the ions in the solution. Comment on the statement.
(c) At $25^{\circ} \mathrm{C}$, the equivalent conductance of a $0.02 \mathrm{M} \mathrm{AgNO}_{3}$ solution is $128.7 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv ${ }^{-1}$, while the transport number of Ag^{+}is 0.477 .
Calculate (i) the ionic mobility of Ag^{+}in the solution and (ii) velocity of Ag^{+}if 6.0 volts are applied across the electrodes 4.0 cm apart.
(d) Discuss the effect of temperature on the viscosity of a liquid. How does it differ from that of a gas?

UNIT-II

3. (a) If volume and density of a solution containing n_{1} moles of solvent of molecular weight M_{1} and 1 mole of solute of molecular weight M_{2}, at a certain temperature and pressure are V litres and $\rho \mathrm{g} \mathrm{cm}^{-3}$ respectively then show that

$$
\bar{V}_{1}=\frac{M_{1}}{1000\left[\rho+V\left(\frac{d \rho}{d V}\right)\right]} \quad\left(\bar{V}_{1}=\text { partial molar volume of the solvent }\right)
$$

(b) Show that in a mixture of ideal gases $\left(\frac{\partial \mu_{i}}{\partial P}\right)_{T, n_{j}}=\frac{R T}{p_{i}}$,
where the terms have their usual significances.
(c) The relation $K_{P}=K_{C}(R T)$ for the equilibrium $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ implies that (K_{P} / K_{C}) has the dimension of energy. - Criticize.
(d) Show that at constant temperature and pressure $\sum n_{i} d \bar{Y}_{i}=0$, where \bar{Y}_{i} is any partial molar quantity and n_{i} is its mole number.
(e) At $25^{\circ} \mathrm{C}$, the standard free energy of formation $\left(\Delta G_{f}^{0}\right)$ of gaseous $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ are 68.1 and $209.2 \mathrm{~kJ} / \mathrm{mol}$ respectively. Calculate K_{n} at $25^{\circ} \mathrm{C}$ for the reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

4. (a) What is the degree of advancement of a reaction? Derive an expression to show its variation with temperature at a given pressure.
(b) Define fugacity coefficient of a gas. Under what condition(s) fugacity of a gas is greater than its pressure?
(c) For a gaseous reaction, $\mathrm{A}(\mathrm{g}) \rightarrow \mathrm{B}(\mathrm{g})$ if the standard reaction Gibbs energy, $\Delta_{r} G^{0}$, is greater than 1, then reactant $\mathrm{A}(\mathrm{g})$ is favoured in the equilibrium. - Justify/ criticise.
(d) Calculate the change in chemical potential of a gas obeying the equation of state $P(\bar{V}-b)=R T$ at 300 K due to isothermal compression from a pressure of 2 to 5 atm . Given: $b=0.043 \mathrm{~L} / \mathrm{mol}$.
(e) Calculate the entropy of mixing when 3 mol of hydrogen is mixed with 1 mol of nitrogen. Assume ideal behaviour of the gases.

UNIT-III

5. (a) The Schrödinger equation for a particle of mass m free to move parallel to the x-axis with zero potential energy is $-\frac{h^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi$

The solution of this equation has the form $\psi=A e^{i k x}+B e^{-i k x}(A, B$ and k are constants). Using the solution find E.
(b) Show that two eigenfunctions belonging to different eigenvalues of an Hermitian operator are orthogonal.
(c) State and explain Stefan-Boltzmann law with the help of a schematic diagram.
(d) The work function for metallic caesium is 2.14 eV . Calculate the kinetic energy and the speed of the electrons ejected by light of wavelength, 300 nm .
[Given: $1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$]
6. (a) If Ψ_{1} and Ψ_{2} are two degenerate states with an eigenvalue a_{1} for a linear operator then any linear combination of Ψ_{1} and Ψ_{2} is also an eigenfunction of the operator with the eigenvalue a_{1}. - Justify.
(b) If $\hat{D}=\frac{d}{d x}$, then find $(\hat{D}+\hat{x})(\hat{D}-\hat{x})$.
(c) Find the zero-point energy of a particle of mass $1 \times 10^{-28} \mathrm{~kg}$ confined in a rectangular box of sides $L_{x}=L$ and $L_{y}=2 L$, where L is 10 nm .
(d) For a free particle in a one-dimensional box with impenetrable walls when potential energy is zero inside the box, find the probability of finding the particle in the central third of the box (from $a / 3$ to $2 a / 3, a=$ dimension of the box) in its ground state.
N.B. : Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

