West Bengal State University B.A./B.Sc./B.Com (Honours, Major, General) Examinations, 2015

PART - I

CHEMISTRY — HONOURS

Paper - II

Duration: 2 Hours |

[Full Marks: 50

The figures in the margin indicate full marks.

CEMAT-12-PA

Answer any two questions taking one from each Unit.

UNIT - I

1. a) The Maxwell's speed distribution is given as

$$P(c) = Ac^2 e^{-mc^2/(2kT)}$$

What does P(c) mean? Find the dimension of A.

Find
$$\left\langle \frac{1}{C} \right\rangle$$
 [Given : $\int_{0}^{\infty} x \exp(-\beta x^2) dx = \frac{1}{(2\beta)}$] 1 + 1 + 3

- b) What do you mean by 'collision diameter'? Derive a relation between mean free path (λ) and collision diameter of a gas. How does λ depend on T and P?
- c) Apply the equipartition principle to calculate $\gamma (\approx C_p/C_v)$ for a linear, tri-atomic, ideal gas. What is the limiting value of γ when the number of atoms in the molecules becomes very large? 2+1
- 2. a) Obtain an expression for the distribution of translational kinetic energy from Maxwell's distribution of speed. How does it differ if the gas is changed from Helium to Argon?

 4 + 1
 - Calculate the number of binary collision per c.c. of $N_2(g)$ per second, at 2 atm, 30°C. The bond length of the gas molecules is 1.87 Å.

SUB-B.Sc.(HN)-CEMA-2050

[Turn over

c) Two flasks A and B have equal volumes. A is maintained at 300 K and B at 600 K. A contains hydrogen gas and B has equal mass of methane gas. Assuming ideal behaviour for both the gases, calculate (i) the ratio of mean free path in two containers [The collision diameter of methane may be assumed to be twice as that of hydrogen], (ii) the ratio of coefficient of viscosity in two flasks.

UNIT - II

- 3. a) Explain the term 'contact angle' and indicate explicitly the factors which govern its value when a liquid comes in contact with a solid in a gaseous atmosphere.
 - b) At room temperature iodine is solid, bromine is liquid, chlorine and fluorine are gaseous. Can you explain this on the basis of intermolecular attraction?
 - Write the unit and dimension of van dar Waals constants 'a' and 'b'. 1 + 1
 - d) A steel ball of density 7.9 g/c.c. having diameter of 4 mm is dropped into a column of liquid. It takes 55 seconds to fall through a distance of 1 m. Calculate the viscosity of the liquid. [Given, the density of the liquid is 1.10 g/c.c.]
 - e) What do you mean by 'Boyle temperature'?
- 4. a) Give the graphical representation of a van der Waals gas explaining the different regions and parts.
 - Explain critical temperature (T_c) with reference to the curve. 3 + 2
 - b) What is 'virial equation of state' ? What does the second viral coefficient ($B_{2\nu}$) signify ?
 - c) What are viscosity and viscosity coefficient? Explain the unit of the coefficient.
 - d) Derive Laplace's equation for excess pressure inside a spherical bubble, suspended in air.

CEMAT-12-PB

Answer any two questions taking one from each Unit.

UNIT - I

5.	a)	For a constant pressure process, $\Delta H=\boldsymbol{q}_p$. Does it follow that \boldsymbol{q}_p is a
		state function?
	b)	Why does C_p exceeds C_v for an ideal gas ? Give a molecular
		explanation. 2
	c) ·	Show that $C_p - C_v = \frac{T\alpha^2 V}{\kappa}$, where α = coefficient of volume expansion;
		κ = coefficient of compressibility.
	d)	At 25°C the coefficient of thermal expansion of water is
		$\alpha = 2 \cdot 07 \times 10^{-4} \mathrm{K}^{-1}$ and the density is 0.9970 g/cm ³ . If the temperature
		of 200 g of water is raised from 25°C to 50°C under a constant
		pressure of 101 kPa, calculate w . Calculate also q , ΔH and ΔU .
		(Given , $C_p = 75 \cdot 30 \text{ JK}^{-1} \text{mol}^{-1}$)
	e)	A spontaneous polymerisation must be an exothermic process." Justify or criticize.
6.	a)	" C_{v} is independent of pressure for a gas obeying equation of state
		P(V - nb) = nRT." Justify or criticize.
	b)	Show the equivalence of Kelvin-Planck and Clausius statements of the second law of thermodynamics.
	(C)	Show that for a van der Waals gas, $\frac{\alpha}{\kappa} = \frac{R}{V - b}$ where, $\alpha =$ coefficient of
		volume expansion; κ = coefficient of compressibility.
	d)	Draw a Carnot cycle in <i>H vs T</i> and <i>U vs S</i> diagram.
	e)	A Carnot cycle heat engine does 2.50 kJ of work per cycle and has an
		efficiency of 45%. Find the temperatures of the two reservoirs between
		which the Carnot engine is operating. 2 UNIT – II
7.	a)	For a consecutive reaction $A \rightarrow B \rightarrow C$, obtain a relation for the time at which the concentration of B will be maximum in terms of rate constants
		of individual steps. Assume all the reaction steps are first order.
	b)	"Second order reaction is never completed." Justify or criticize.

CEMA(HN)-02

c) The rate constant of a reaction is experimentally found to decrease with increase in temperature. Is there any contradiction with Arrhenius rate equation?

d)

Show that if A undergoes two simultaneous reactions (parallel reactions) to produce B and C according to the reactions $A \to B$ and $A \to C$, then the observed activation energy (E_a) for the disappearance of A is given by

Rhari Rob. (3)

the equation $E_a = \frac{k_1 E_1 + k_2 E_2}{k_1 + k_2}$, where k_1 and k_2 are the first order rate

constants of the individual step and E_1 and E_2 are activation energies of

the two steps.

a) "Unimolecular reactions are not always first order." Justify to using Lindemann's theory.

3

- b) "Zero order reaction must be a multi-step reaction." Justify or criticize. 2
- c) Consider a reaction $A \rightarrow \text{Products}$, which is one-half order with respect to A.
 - i) Derive the integrated form of rate equation.
 - ii) Write the unit of rate constant (k).
 - Decide what function should be plotted to determine the rate constant. Also show the plot. $2 + \frac{1}{2} + (1 + \frac{1}{2})$
- d) "Activation energy of a reaction can never be zero or negative." Justify or criticize.