West Bengal State University B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2010

PART - I (Honours) CHEMISTRY Paper - I

Duration: 4 Hours]

Maximum Marks: 100

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

GROUP - A

(Marks : 50)

Answer any three questions taking one question from each of the three Units.

Unit - 1

- (a) (i) Write down Maxwell's expression for the distribution of molecular speeds in three dimensions and obtain an expression for the distribution of translational kinetic energy.
 - (ii) Derive an expression for the number of molecules with translational kinetic energy greater then \in 'assuming \in '>>> kT, k = Boltzmann constant.
 - (b) If compressibility factor, Z, for a van der Waals gas be 1.000056 at 0°C and 1 atmosphere and the Boyle temperature be 107 K, calculate neglecting higher terms of P, the values of the van der Waals constants a and b.
 - (c) Draw the one dimensional velocity distribution curve of the molecules of an ideal gas at two different temperatures and comment on the area under each curve.
 - (d) Apply the equipartition principle to calculate the average energy per molecule of CO₂ gas at TK.

Sub-B.Sc.(HN) CEMA-0203

WBSUB

[Turn over

&

ODIV.	TT P(XXX4)	~~
2.	(a)	A gas obeys equation $P(V-b) = RT$.
		(i) Is it possible to liquefy the gas? Justify your answer.
		(ii) Show that the gas does not have the Boyle temperature. 2
	(b)	Define mean free path of a gas molecule. Derive a relation between mean free
		path and collision diameter of gas molecules. 1 + 3
	(c)	Obtain expressions for the van der Waals constants in terms of critical
		constants.
	(d)	Give a schematic plot of Z vs P to show the effect of temperature on deviation
		of a real gas from ideal behaviour.
		Unit - 2
3.	(a)	One mole of an ideal monatomic gas at 298K expands to double its volume at
		constant pressure. Calculate the heat absorbed by the gas.
	(b)	Show that $(\partial U/\partial V)_T = 0$ for a gas obeying $P(V - nb) = nRT$ [Derivation of
		Maxwell relation is not necessary]. Evaluate ($\partial U/\partial V$) _T for an ideal gas. 2 + 2
	(c)	Calculate the change in entropy when 10 g of tin is heated from 293 K to
		573 K. The melting point of tin is 505 K. The latent heat of fusion of tin is
		14 cal g ⁻¹ and specific heats of solid and liquid tin are 0.055 cal g ⁻¹ and 0.064 cal g ⁻¹ respectively.
		the state of the s
	(d)	One mole of an ideal gas is expanded adiabatically but irreversibly from V_1 to V_2 and no work is done.
		(i) Does the temperature of the gas change?
		(ii) What is ΔS for the gas and the surroundings?
. = .	(e)	If a reversible Carnot cycle working between two temperatures T_1 and
		T_2 ($T_2 > T_1$) is plotted on a T - S diagram, show that the area enclosed is
		equal to the work done in the reversible cycle. Indicate the efficiency of the

process as a ratio of two areas in the properly drawn diagram.

	(a)	What is meant by Clausius inequality?
	(b)	Show that $C_P - C_V = \frac{\alpha^2 \text{ TV}}{\beta}$
		where, α = coefficient of thermal expansion and
		β = coefficient of compression of gas.
	(c)	Prove that $\left[\frac{\partial (G/T)}{\partial (1/T)}\right]_P = H$
	(d)	For a certain reaction, the change in the Gibbs free energy is
		ΔG (in lit-mole ⁻¹) = 14000 + 7.0 T ln T - 72.0 T. Compute ΔS and ΔH of the
		reaction at 27°C.
	(e)	For an adiabatic process find the P - V relationship for a van der Waals gas. 2
		Unit - 3
5.	(a)	Obtain the expression for the rate constant of a second order reaction with
		different initial concentrations of the reactants.
	(b)	"Unimolecular reactions are not always first order." Justify the statement using
		Lindemann's mechanism.
	(c)	In the gas phase reaction $k = 2.05 \times 10^{13}$ exp $(-24.65 \text{ k cal mole}^{-1}/\text{RT})$ sec ⁻¹ .
		(i) Give the values of A and E_a
		(ii) Find k and $t_{1/2}$ at 0°C. 2 + 2
min P	(d)	Consider the following parallel first order reactions:
		$A \xrightarrow{k_1} B$, $A \xrightarrow{k_2} C$
		Show that (i) $[B]/[C] = k_1/k_2$ (ii) for the set of initial condition $[B] = [C] = 0$ and $k_1/k_2 = 2$, give a schematic plot of $[A]$, $[B] & [C]$ as a function of time
		on the same graph.
6.	(a)	Discuss the physicochemical principle of the measurement of energy of
0.		activation of a reaction.
	(b)	Show that the ratio of $t_{1/2}/t_{1/4}$ of any nth order reaction ($n \neq 1$) with identical
		initial concentration of the reactants, can be written as a function of n alone. 2
	(c)	Draw the concentration-time diagram of A, B and C for the following
		consecutive reactions:
		$A \xrightarrow{k_1} B$ and $B \xrightarrow{k_2} C$
		Justify your answer with suitable mathematical forms for concentration.
	(d)	Discuss the activated complex theory of bimolecular reactions and explain how
		this helps in evaluating the standard entropy of activation.
	(e)	Discuss the effect of pH on the enzyme-catalysed reaction.
		Turn over

GROUP - B

(Marks: 50)

Answer any three questions taking one question from each of the three Units.

Unit - 1

1. (a) Draw the π – MO pictures of the following :

2

- (i) 1,3-butadiene (HOMO in the excited state)
- (ii) Allyl anion (HOMO in the ground state).

9

(b) Write the IUPAC names of the following compounds:

2

- (i) $CH_2 = CH CH_2 C \equiv CH$
 - i) O CO_2 Et

(c) Indicate, with reasons, whether the following compounds are aromatic, non-aromatic or anti-aromatic:

- 100
- (d) The dipole moment of *p*-nitroaniline is greater than the sum of the dipole moments of aniline and nitrobenzene. Explain.
- (e) Which of the following species is more stable and why?

2

$$CH_3$$
 $CH_3 - C \oplus$
 CH_3

- (f) (i) Draw the potential energy diagram of 1, 2-dichloroethane for rotation around carbon-carbon bond and indicate the most stable conformer. 3
 - (ii) Assign R/S descriptors to the stereogenic centres of the following compounds.

(iii) Calculate the double bond equivalent of a compound having molecular formula $\rm C_7~H_9~N.$

Sub-B.Sc.(HN) CEMA-0203

WBSUB

- 2. (a) Define the following terms with suitable example:
 - (i) Chirotopicity
 - (ii) Alternating axis of symmetry (S_n) .

1 1

3

- (b) Write the Fischer projection formula of (2S, 3R)-3-bromo-2-butanol and represent it also in Sawhorse projection formula.
- (c) Indicate the relationship (homomer, enantiomer, diastereomer) of the following compounds in each pair.

9 HO
$$\frac{1}{1}$$
 OH $\frac{1}{1}$ OH

- (d) Arrange the following compounds in order of their increasing heat of hydrogenation values. Explain the order. 2
 1-hexene, cis-3-hexene, trans-3-hexene.
- (e) Show that the enol form of ethyl acetoacetate (CH₃ COCH₂ CO₂ Et) may exist as different diastereomers. Indicate, with reason, the more stable diastereomer.
- (f) (i) KMnO₄ is insoluble in benzene, but it undergoes dissolution in the presence of 18-crown-6. Explain.
 - (ii) Compare the boiling point of the following isomeric alcohols:

 n-butyl alcohol, sec-butyl alchol, isobutyl alcohol.
- (g) (i) Arrange the indicated bonds of the following compound in order of increasing length. Justify your answer.

(ii) Indicate the most stable conformation of ethylene glycol in Newman projection formula.

Unit - II

3. (a) When the solvent polarity is increased the rate of the SN^2 reaction $HO^- + CH_3OSO_2Ph \rightarrow CH_3OH + PhSO_3$ is slightly reduced but that of the SN^2 reaction

 $\text{Et}_3\text{N} + \text{EtI} \rightarrow \text{Et}_4\text{N}^{\oplus}\text{I}^{\odot}$ is greatly increased.

Explain.

3

(b) Explain the following observations:

- (c) Which one of the following is more acidic and why?

 p-chlorophenol, p-fluorophenol.
- (d) Predict the major product(s) in the following reactions with appropriate mechanistic rationalisation. 2 + 2

- (e) Predict the product(s) obtained in the reaction of (Z)-2-butene with carbene generated from diazomethane in the absence and in the presence of an inert gas. Give mechanism.
- 4. (a) Compare the nucleophilicity of the following and explain: 2

 NH₃, NH₂ OH.
 - (b) Draw explanatory energy profile diagram of the following:

 A reaction is endothermic by 16 k cal/mole. The activation energy for the reverse process of that reaction is 21 k cal/mole. Indicate the activation energy of the forward reaction.
 - (c) Compare the enol content at equilibrium of the given compounds:

Sub-B.Sc.(HN) CEMA-0203

WBSUB

(d) How would you explain the formation of compound 'A' in the following reaction?

(e) Which of two alkyl chlorides in each set will undergo faster hydrolysis in an SN¹ process?

(i)
$$(CH_3)e - C - C(CH_3)_3$$
 CH_3 CH_3

(f) Indicate the product(s) with mechanism.

Unit - III

- 5. (a) Explain the following observations:
 - (i) Treatment of benzene with isobutyl chloride in the presence of anhd. AlCl₃ gives mainly tert-butyl benzene.
 - (ii) Bromine adds to E-2-butene with ~ 100% anti-stereoselectivity whereas addition of bromine to 1-phenyl propene takes place with ~ 70% anti-stereoselectivity.
 - (iii) Acidic hydration of propene yields 2-propanol while the hydroboration-oxidation gives 1-propanol.

Sub-B.Sc.(HN) CEMA-0203

WBSUB

[Turn over

- (b) Acetanilide decolourises bromine when treated with $\mathrm{Br}_2/\mathrm{CCl}_4$ solution, though it does not contain olefinic unsaturation. Explain.
- (c) Predict the product(s) in the following reactions and suggest mechanism in each case. 3×2

(iii)
$$= \frac{H_9^{2+}}{H_2 504/60 \%}$$

6. (a) Identify A, B, C and D in the following transformation:

HC = CH NaNH₂ A CH₃ COCH₃ B H⁺ (CH₃)₂ C (OH) C = CH

H₂(1 mol) C
$$\frac{\text{Al}_2\text{O}_3}{400^{\circ}\text{C}}$$
 D

- (b) Arrange the following in order of increasing rate of nitration and give reason: 3 PhH, PhMe, C_6 D_6 , PhNO₂, PhCl.
- (c) Explain why 1, 3-butadiene undergoes both electrophilic and nucleophilic addition reactions.
- (d) How can you carry out the following transformations? 3×3
 - (i) 2-butyne \rightarrow Meso 2, 3-butanediol
 - (ii) Acetylene → Phenyl acetylene
 - (iii) Z-2-butene \rightarrow E-2-butene.