DC Conductivity of Fe₂O₃-TeO₂ Amorphous Films Prepared by Vapor Deposition Method

Manisha Pal

Department of Physics, Sarojini Naidu College for Women, DumDum, Kolkata-700 028 e-mail: manisha_pal67@yahoo.com

Date of Submission: 28th Feb, 2014 Date of Acceptance: 3rd March, 2014

Abstract

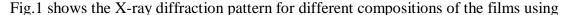
Fe₂O₃-TeO₂ films were prepared using vapor deposition technique and dc conductivity was studied in the temperature range 323-513K for different compositions. X-ray diffraction study confirms the amorphous nature of the films. It was observed that the conductivity of the films at 323K varies from 3×10⁻² to 5×10⁻³Scm⁻¹. The Seebeck co-efficient study indicates that the films are n-type semiconductor. Mott's small polaron non-adiabatic hopping conduction mechanism was valid above 380K and variable range hopping at lower temperature. XPS analysis confirm the presence of Fe²⁺ and Fe³⁺ and hopping of electrons occurs between these two ionic states.

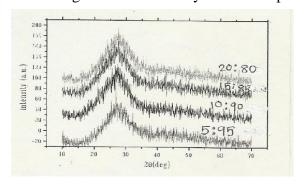
Keywords: dc conductivity, XRD, XPS

1. Introduction

TeO₂ based glasses are important for many possible electrical and optical applications^{1,2}. Addition of transition metal ions in TeO₂ based films are very promising for memory switching devices and cathode materials for batteries^{3,4}. TeO₂ is a conditional glass former and its attractive properties arise from the special structural characteristics. It has been demonstrated that amorphous TeO₂ and crystalline TeO₂ consists of three dimensional network of TeO₄ structural units. The TeO₄ unit is a trigonal in which one of the Te sp³d hybrid orbital is occupied by an electron lone pair while the other two equatorial position and two axial positions are occupied by four oxygen atoms. Introduction of modifier breaks TeO₄ network into Te-O-Te bonds together with new structural units such as TeO₃ with non-bridging oxygen. The TeO₃ unit is a trigonal pyramid, in which an electron lone pair occupies one of the Te sp³ higher orbital. Glasses containing Fe₂O₃ are semiconducting in nature and transport and magnetic properties have been investigated extensively^{5,6}. Conductivity of these glasses arises due to small polaron hopping conduction which are several orders of magnitude higher than silicate, borate glasses containing

same amount of Fe_2O_3 . Conductivity of Fe_2O_3 - TeO_2 glasses are higher than that of MoO_3 - TeO_2 glasses⁷. Due to high stability and different valence state of Fe, conduction mechanism of Fe_2O_3 - TeO_2 films is very important. It is expected that the conductivity of Fe_2O_3 - TeO_2 films is higher than that of MoO_3 - TeO_2 films.


2. Experimental Procedure


 ${
m Fe_2O_3\text{-}TeO_2}$ amorphous films have been prepared by resistance heating evaporation technique using a commercial vacuum coating unit. Glass were prepared using reagent grade ${
m Fe_2O_3}$ and ${
m TeO_2}$ with 99.9% purity for different molar ratio as 5:95, 10:90, 15:85, 20:80 in an electrical furnace at 1073-1173K for 30 min. in air. The melt quenched glass was made powder by grinding in an agate mortar and used for evaporation in a vacuum unit at a pressure 5×10^{-6} torr by passing current 180A for 15min. The films are coated on ultrasonically cleaned non-alkali glass substrate (AN-glass, product of Asahi glass Co. Ltd, 0.7mm thickness) maintained at temperature 373K. The target and substrate distance was maintained at 25cm.

The characterization of the films was studied by x-ray diffraction (Philips, X'pert system PW 1830). Thickness of the films was measured using a contact needle type surface roughness measuring tester (Deltac-3, ULVAC, Chigasaki, Kanagawa, Japan) and found in the range 250-360 nm. X-ray photoelectron spectroscopy (XPS) study performed using ULVAC-PHI XPS spectrometer, (Chigasaki, Kanagawa, Japan) after 10s sputtering in Ar atmosphere.

The dc electrical conductivity was performed by measuring temperature and current with a digital thermometer (Advantest, TR 2114) and a Keithley electrometer (Model 614) respectively after application of a fixed voltage. The Seebeck co-efficient of the films was determined by measuring the thermoelectric power between two copper constantan thermocouples attached to the samples with temperature difference 5-10K.

3. Results and Discussion

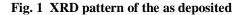


Fig.2 TEP of 20Fe₂O₃-80TeO₂ films

 CuK_{α} radiation exhibiting a broad hump at 25-27° indicating an amorphous structure.

Fig.2 shows the thermoelectric power for 20:80 films. It is confirmed that the films are n-type semiconductor due to negative Seebeck co-efficient.

Fig.3 shows the XPS spectra of amorphous $20Fe_2O_3$ -15TeO₂ film. Fe peaks are ascribed as Fe, Fe²⁺; Fe₃O₄ and Fe³⁺ at binding energy 706.67, 709.17, 710.38 and 712.15eV respectively. The area of the peaks Fe₃O₄ and Fe described as 13.11% and 11.79%. Neglecting these two peaks in respect to other peaks Fe²⁺ and Fe³⁺ the calculated reduced Fe ion ratio for 20:80

 $C_{Fe} = \frac{Fe^{2+}}{Fe^{2+} + Fe^{3+}} = 0.42$. From these it is confirmed that charge transport occurs due to different valence state Fe²⁺ and Fe³⁺.

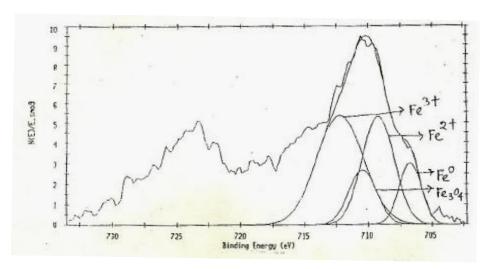


Fig.3 XPS spectra of 20Fe₂O₃-80TeO₂ films

At 323K the conductivity of the films varies from 2×10^{-2} to 5×10^{-3} Scm⁻¹. The conductivity of the films increases with increase of temperate for all films and follows Mott's small polaron hopping conduction model⁸. The temperature dependence of electrical conductivity σ_{dc} for different film compositions is described in the temperature range (380-513K) as $\sigma = (\sigma_o/T)$ exp (-W/kT); where σ_o is the pre-exponential factor and W is the activation energy for conduction. The experimental temperature (256K) and estimated temperature (453K) obtained from log σ vs. W (Fig.4) can be concluded that the present films are due to non-adiabatic small polaron hopping. The conductivity of the films increases with increase of Fe₂O₃ content. Variable range hopping (VRH) proposed by Mott is valid in the temperature above 300K is based on single optical phonon approach. In this model σ is given by

$$\sigma = B \ exp \ (-A/T^{1/4}); \ where \ A = 4[2\sigma^3/9 \ \pi k N(E_F)]^{1/4} \ and \ B = [e^2/2(8\pi)^{1/2}] v_o [N(E_F)/\alpha k T]^{1/2}$$

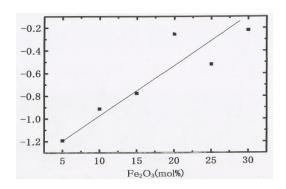


Fig.4 $\log \sigma$ vs. Fe₂O3 (mol%) of the of Fe₂O₃- TeO₂ films at 253K

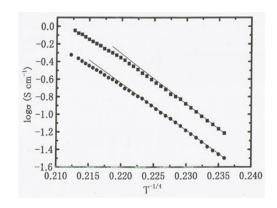


Fig.5 Plot of log σ against $T^{-1/4}$ of Fe₂O₃-TeO₂ films for 15:85(\bullet) and 20:80(\Box)

 $N(E_F)$ is the density of states at the Fermi level of the order of $10^{21} \text{eV}^{-1} \text{cm}^{-3}$ except for 10:90 films is of 10^{24} . Some electrical parameters are given in Table-2

Table-2: Mott's parameters for Fe₂O₃-TeO₂ films from conductivity data

Fe ₂ O ₃ :TeO ₂	Thickness	$\sigma_{dc}(300K)$	W(eV)	$N(E_F)(eV^-)$	R_{VRH}	W _o (eV)
	(nm)	(Scm^{-1})		¹ cm ⁻³)	(Å)	
5:95	501	5.08×10 ⁻³	0.283	4.75×10^{21}	5.945	0.239
10:90	261	4.84×10^{-2}	0.203	5.19×10^{24}	1.034	0.042
15:85	301	3.05×10^{-2}	0.253	7.93×10^{22}	2.941	0.118
20:80	352	5.49×10^{-2}	0.235	5.72×0^{21}	5.676	0.228
25:75	363	3.17×10^{-2}	0.258	6.71×10^{21}	5.342	0.215

For VRH conduction $R_{VRH} >> 1$ and $W_o >> kT$. For the present films R = 1.0-6.0 and $W_0 = 0.12$ - 0.24eV. These parameters confirm VRH conduction in the present films at high temperature.

4. Conclusion

We have successfully prepared Fe_2O_3 - TeO_2 films using vapor deposition technique. X-ray diffraction study confirms the amorphous nature of the films. Electrical conductivity and Seebek study indicates that the films are n type semiconductor. Mott's small polaron non-adiabatic hopping conduction mechanism was valid above 380K and variable range hopping above room temperature. XPS analysis confirms the presence of Fe^{2+} and Fe^{3+} and hopping of electrons occurs between these two ionic states.

References

- 1. T. Nishida, M.yamada, T.Ichii and Y. Yakashima, Jpn.J. Appl. Phys. 30, 768 (1991).
- 2. I. Shaltout, YI-Tang, R. Braunstein and E.E. Shaisa, J. Phys. Chem. Solids, **57**, 1223 (1996).
- 3. Manisha Pal, K. Hirota and H. Sakata; Phys. Stat Sol (a) 196, 396 (2003).
- 4. A. Ghosh, J. Appl. Phys., 64, 2652(1998).
- 5. A. Mekki, G.D.khattak, L.E.Wenger, *J. Non-Crys. Solids*, **352**, 3326 (2006).
- 6. H.Satao, H. Sakata, Mat. Chem & Phys. 65, 186(2000).
- 7. Manisha Pal, K. Hirota, Y. Tsujigami and H. Sakata; *J. Phys. D, appl. Phys.* **34,** 459 (2001).
- 8. I.G.Austin and N.F.Mott, Adv. Phys. 18, 41 (1969).