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Abstract

We have investigated in experiment, a variation of the simple double pendulum
in which the point masses have been replaced by rectangular plates. We have
captured in video, this system in its various states of motion- small oscillatory
and chaotic. We have then extracted the frames out of the video using MAT-
LAB. We detected the motion of the two pendulums by identifying the relevant
colour pixels in each frame. The pixel co-ordinates were then used to calculate
velocities and plot various scaled graphs related to the motion. The fact that
in the experiment, the pendulum had actually swung in chaotic motion, has
also been demonstrated. We have also done a simulation of the simple double
pendulum using MATLAB, where the initial conditions and system dimensions
are adjustable by the user. This represents an ideal situation, as all the condi-
tions are controlled. Velocity-time plots and phase portraits have been drawn

from the simulation data.

*This project was done when the author was at St. Xavier’s College, Kolkata, under the supervision

of Dr. Shibaji Banerjee.
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1. Introduction

The double pendulum is a mechanical device that consists of two rigid pendulums linked
together. In the present case, the double pendulum is implemented using two transparent
bars connected to each other by screws. It has a rich dynamical behaviour that is governed
by a set of coupled ordinary differential equations. The double pendulum undergoes chaotic

motion for certain energies and is very sensitive to initial conditions.

Poincaré was the first person to glimpse the possibility of chaos, in which a deterministic
system exhibits aperiodic behaviour that depends sensitively on the initial conditions.
Small variations in these conditions produce widely different results, in such a way that
the long term behaviour of chaotic systems cannot be predicted. Chaotic behaviour has
been observed in the laboratory in a variety of systems including electrical circuits, lasers,
oscillating chemical reactions, fluid dynamics, and mechanical and magneto-mechanical

devices, as well as computer models of chaotic processes.

A commonly used definition says that, for a dynamical system to be classified as chaotic,

it must have the following properties:
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o It must be sensitive to initial conditions.
 Its periodic orbits must be dense.

Sensitivity to initial conditions means that each point in such a system is arbitrarily
closely approximated by other points with significantly different future trajectories. Thus,
an arbitrarily small perturbation of the current trajectory may lead to significantly different
future behaviour. Sensitivity to initial conditions is popularly known as the ”butterfly
effect.”

Density of periodic orbits means that every point in the space is approached arbitrarily
closely by periodic orbits.

Chaos theory became formalised when it first became evident for some scientists that
linear theory simply could not explain the observed behaviour of certain experiments like
that of the logistic map. What had been beforehand excluded as measure imprecision and
simple "noise” was considered by chaos theories as a full component of the studied systems.

The main catalyst for the development of chaos theory was the electronic computer.
Much of the mathematics of chaos theory involves the repeated iteration of simple math-
ematical formulae, which would be impractical to do by hand. Computers made these
repeated calculations practical, while figures and images made it possible to visualise these

systems.

2. Theory

2.1 The Equations of Motion

VI IIIIIIIII4

Figure 1: A Double Pendulum

The diagram shows the geometry of the double pendulum.

The equations of motion may be determined from the Lagrangian of the system. The

kinetic energy of the device is the sum of the translational kinetic energy of the centre
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of mass of each pendulum, and the rotational kinetic energy of each pendulum about its

centre of mass. It is given as:
1 9, oy, L 2 .2
T= Zml(% +91) + 2m2(x2 + 93)
1 . 1 . . .
le. T = 57’)’“[/%9% + img(L%Q% + L%@% + 2L1L29102 008(91 - 92)) (1)

The potential energy is equivalent to that of two point masses at the locations of the

centre of mass f each pendulum. We introduce the following new variables:
xr1 = Lysin6,
y1 = Ly(1 — cosby)
Ty = Ly sinfy + Lo sin 6y
y2 = L1(1 — cosBy) + La(1 — cosBy)

Thus, we get,

V =myL1g(1 —cosb) + ma(Li(1 —cosby) + Lo(1 — cosby))g
ie. V = (mqg+my)Lig(1 —cosby) +malag(l — cosby) (2)

In the above, m; and mq represent the masses of the two bobs,
Ly and L, are the respective effective lengths of the two pendulums,
61 and 0, represent their angular displacements,
0, and 6, represent the angular velocities and

g is the acceleration due to gravity.

2

6 St )

(a) Poincaré Section at Low Energies (b) Poincaré Section at Medium Energies (C) Poincaré Section at High Energies

Figure 2: Poincaré Sections for Different Energies

The Lagrangian of the system is given by:
L=T-V
From here, we get the equations of motion, or the Euler-Lagrange equations, as follows:
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d (0L oL
dt(@&) ~on, " @

Written explicitly, they look like this:

L L
aq + MQidQ + COS(91 — 92) + ,UijOé% + sin(91 — 92) + w% sin 91 =0 (5)
L
L—Qé@ + 6y cos(0; — b5) — a?sin(f; — ;) + wlsinby = 0 (6)
1

Here, the following new variables have been used:

a :91
@2:92

H2 = mq +m2
2 g
Wy = —
1 Ll

2.2 Poincaré Sections

The general dynamics of the pendulum maybe investigated by analysing the phase space
for increasing values of total energy. The phase space of the pendulum is three dimensional.
There are four co-ordinates, i.e. 61, 05, §; and 0, , but one of these maybe eliminated

because energy is conserved.

The phase space maybe examined by considering the two dimensional Poincaré Section,
defined by selecting one of the phase elements and plotting the values of others every
time the selected element has a certain value. For a given choice of initial conditions, the
Poincaré Section shows points representing the intersection of an orbit in phase space with
a plane in phase space. Periodic orbits produce a finite set of points in the Poincaré Section,
quasi-periodic orbits produce a continuous curve and chaotic orbits result in scattering of
points within an energetically accessible range.

We use conservation of energy to eliminate 0, and choose the Poincaré plane to be
6, = 0.
The total energy is given by:
Einw=T+YV (7)

From this, we get a quadratic equation for 6, with the following solutions:

1 .
7((7711 + ma2)gL1)(1 — cos 1) + §(m1 + mg)L%@% — Eior

. Ly - L - 2
0y = ——0 01+ —0 01) —
o I 1 cos 01 \/(L2 1 cosfq) mgL%

We now plot a point (6, 91) in the phase space of the inner pendulum, when the two
conditions 05 = 0 and 6’2 + %01 cos 1 > 0 are fulfilled. This leads to a unique definition of
a Poincaré phase space section.
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For systems that have low total energies [Figure 2(a)], the motions of the pendulums
will not have enough energy to reach large angles. Because of this, the diagrams are more
contained. There are more periodic orbits available within the system. With an increase
in the total energy of the system [Figure 2(b)], comes more kinetic energy available to
each pendulum, so their swings can become greater and their positions will vary more with
time. The resultant Poincaré Section is seen to be larger and more complex. There are
the beginnings of some chaotic behaviour and multiple stable orbits within the different
regions. For systems with larger total energies [Figure 2(c)], the system can be observed
to become more chaotic. Because the total energy of the system is so great, neither
pendulum is confined within the periodic boundaries. As a result, the Poincaré Section

becomes increasingly large and unstable.

3. Experimenting with the Compound Double Pendulum

3.1 Capturing the Video

In order to carry out this procedure, the following instruments have been used:

* Two rectangular plates made of aspex.

* Bearings

* A vice

* Colour

* A camera

* A stand

The end of the aspex bars were coloured differently so as to be able to identify relevant
pixels later on. The two pendulums were attached to each other using bearings such that
they were free to oscillate. The inner pendulum was attached to another bar with bearings,
which was in turn attached to the vice. After setting the system to motion, the movements
of the same were captured in video with the help of a camera. The video thus obtained
was converted to a format identifiable by MATLAB.

3.2 Getting Separate Frames from the Video

Once the videos were obtained in MATLARB’s recognisable version (with a bitrate of 24kbps
and with MS-MPEG/ V2 coding). The number of frames per second were adjusted at 100

and the total number of frames thus produced were according to the duration of each video.

3.3 Identifying Colour Pixels from Each Frame and Calculating

Positions and Velocities

A code was written which read each frame serially and this was designed to identify the
position of the outer pendulum by identifying the red colour pixels and the position of the

inner pendulum by identifying the blue colour pixels.

S. Sen Article No.10 Page 6



The Beats of Natural Sciences Issue 1 (March) Vol. 1 (2014)

Since the frame rate was fixed at 100 fps, the time difference between two frames was
0.01 By diving the difference in positions of the pendulums in two consecutive frames by

this time difference, the velocities of the two pendulums were obtained.

3.4 Results

The plots showing variation of velocity with time and phase plots for motion in small
oscillatory range and chaotic range were obtained. It is hard to reach definite conclusions
from the velocity-time plots. The basic problem is that it is a multi-dimensional data set:

we have four different state variables, plus time.

3.4.1 Small Oscillatory Motion

Figures 3(a), 3(b), 3(c) and 3(d) shows the various plots obtained for small oscillatory

motion.

VelocityTme Plo or Iner Blue Penduum
T T T

]

|

A AL

g |V

inf, \

i

WWTJMTAD

A

/

N

I

(a) V-t Plot for Inner Blue Pendulum in Small Oscillatory Motion
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(b) V-t Plot for Outer Red Pendulum in Small Oscillatory Motion
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(d) Phase Plot for Inner Blue Pendulum in Small Oscillatory Motion

Figure 3: Plots for Small Oscillatory Motion from Experiments
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3.4.2 Chaotic Motion

Figures 4(a), 4(b), 4(c) and 4(d) show the various plots obtained for chaotic motion.
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(a) V-t Plot for Outer Red Pendulum in Chaotic Motion
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(b) V-t Plot for Inner Blue Pendulum in Chaotic Motion

(d) Phase Plot for Outer Red Pendulum in Chaotic Motion

Figure 4: Plots for Chaotic Motion from Experiments

When the system oscillates with low total energy, i.e. when it is in small oscillatory
motion, the phase space diagrams for both the inner and outer pendulums are observed to
be small and compact. When compared to the phase diagrams of the system with larger
energy, it can be seen that the phase space is larger and fill up more space. This observation
can be attributed to the fact that a system with more energy has more momentum to
swing with. The different planes seen in the phase plots correspond to different values of
the variables.In the following sub-section, we will show that in these high energies, the

pendulum had actually gone on to chaotic range.
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3.4.3 Histogram of Displacement Data

A histogram was made out of the data for the displacements of the pendulum at different
times. The outline of the histogram for the outer red pendulum was seen to be of Gaussian

nature. It is shown in Figure 5.

The normal or Gaussian distribution has the following mathematical form:

where o is called the standard deviation.

While in chaotic motion, co-relation of the motion of the pendulum with time is ap-
parently destroyed. Hence, its displacements after each time interval represents a random
walk. Now, the distribution function representing such a case is Gaussian, with the peak
of the curve having its centre around the most probable density. In Figure 5, it is seen
that when the displacements are binned into intervals, they indeed trace the form of a
Gaussian curve. Thus, we conclude that the motion of the double pendulum had actually

been chaotic.

Histogram Formed from Displacement Data of Outer Red Pendulum
T T T

Figure 5: Histogram Formed from Displacement Data of Outer Red Pendulum

3.5 Results of Simulation

3.5.1 Small Oscillatory Motion:

Figures 6(a) and 6(b) show the plots for variation of angular velocity with time for small
oscillatory motion.

3.5.2 Chaotic Motion:

Figures 7(a) and 7(b) show the plots for variation of angular velocity with time for chaotic
motion.
We see that in case of the chaotic region, unlike the case of small oscillations, co-relation

with time is apparently lost.
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(b) Inner Pendulum, Small Oscillations

Figure 6: Plots for Small Oscillatory Motion under Simulation
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(b) Outer Pendulum, Chaotic Motion

Figure 7: Plots for Chaotic Motion under Simulation

3.5.3 Poincaré Sections Obtained from the Simulation:

The different Poincaré Sections for different values of E}, were obtained. With low energy,
the obtained Poincaré map is shown in Figure 8(a). Figure 8(a) shows the map where the
pendulum begins to move into chaotic range. As clearly seen from the two figures, the

phase points spread over the phase plane a lot more in the second case, when compared to
the first one.
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Puoincaré Map for Small Oscillations [thetal=pi/6 and theta2=pi/20]
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(a) Poincaré Map for Small Energy

Paincaré Map with thetal= pif2 and theta2=pi/3

(b) Poincaré Map Showing Beginnings of Chaotic Motion

Figure 8: Poincaré Sections Obtained from Simulation
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